深圳市芯创世纪电子有限公司

Description

The SE8117 series of high performance low dropout voltage regulators are designed for applications that require efficient conversion and fast transient response.

In addition, SE8117 is designed to be stable under conditions where Cin and Cout are not present. However, it is recommended to include Cin and Cout in the system design as this will speed up the transient response and increase the PSRR rating. SE8117 is characterized under Junction Temperature from -40°C to +125°C.

1A Positive Voltage Regulators (Preliminary)

SE8117

Features

- Low Dropout Performance.
- Low Quiescent Current: 2.7mA (Typ.)
- Guaranteed 1A Output Current.
- > Wide Input Supply Voltage Range.
- > Stable operation without Cin and Cout.
- > Over-temperature and Over-current Protection.
- > Fixed or Adjustable Output Voltage.
- > Available in SOT-223 and TO252 Packages.
- RoHS Compliant

Pin Configuration

Application

Active SCSI Terminators.

High Efficiency Linear Regulators.

5V to 3.3V Linear Regulators

Motherboard Clock Supplies.

 \triangleright

≻

 \triangleright

Pin Description

NO.	Pin Name	Pin Function Description
1	ADJ/GND	A resistor divider from this pin to the VOUT pin and ground sets the
		output voltage (Ground only for Fixed-Mode).
2	OUT	The output of the regulator. A minimum of 4.7 μ F capacitor (0.15 Ω ≤
		ESR $\leq 0.5\Omega$) must be connected from this pin to ground to insure
		stability.
3	IN	The input pin of regulator. Typically a large storage capacitor is
		connected from this pin to ground to insure that the input voltage does
		not sag below the minimum dropout voltage during the load transient
		response. This pin must always be 1.3V higher than VOUT in order for
		the device to regulate properly. A minimum of 4.7µF capacitor (0.15 $\Omega \leq$
		ESR $\leq 0.5\Omega$) must be connected from this pin to ground to insure
		stability.